의안번호	제 2 호
심 의	2017. 4. 6.
연 월 일	(제 15 회)

심 의 사

제3차 남극연구활동진흥 기본계획('17~'21)(안)

국가과학기술심의회

제 출 자	미래창조과학부장관 환 경 부 장 관			최양희	외	亚	부	장	관	윤병세				
	至	^r	환	경	부	장	관	조개	해	양수	산.	부 장	· 관	김영석
제출	- 연	월일						2017.	4.	6.				

1. 의결주문

○ 「제3차 남극연구활동진흥 기본계획('17~'21)(안)」을 별지와 같이 의결함

2. 제안이유

- 「남극활동 및 환경보호에 관한 법률」제21조에 따라, 남극 연구활동의 목표 및 추진과제 등을 반영하여 관계부처합동* 「제3차 남극연구활동진흥 기본계획('17~'21)(안)」을 확정하고자 함
 - * 미래창조과학부, 외교부, 환경부, 해양수산부

3. 주요내용

가. 남극 연구활동 진흥의 필요성

- 지구적인 환경 변화의 원인 규명과 미래 예측을 위한 과학연구가 시급하며, 이러한 연구활동을 뒷받침하기 위한 지원체계가 필요
- 기후변화 등 인류공동의 현안을 해결하기 위한 남극 과학연구를 촉진하고, 중·장기적으로 남극지역에서의 발언권과 영향력을 증대
- 남극 연구활동의 당위성과 시급성에 대한 국민적 이해와 국가적 컨센서스를 바탕으로 향후 연구활동을 체계적으로 추진

나. 제2차 기본계획의 시사점

- 아라온호 취항 이후 거둔 세계적 수준의 연구성과를 지속적으로 창출하기 위해 인프라 활용의 효율성을 극대화할 필요
- 장보고과학기지를 기반으로 남극연구 활동의 지역·범위가 확대됨에 따라 종합적 안전시스템의 확립이 필요

- 남극 내륙을 향한 독자적 육상경로(코리안 루트)를 개척하고, 대륙기반 연구를 주도할 기지인프라(제3과학기지) 확보 필요
- 우수한 기초과학 연구의 성과를 바탕으로 신성장 동력·신산업 창출을 위한 기반마련과 연구저변 확대가 필요

다. 비전과 목표

비전

인류공동의 현안해결에 기여하는 남극연구 선도국

목표

- ◈ 기후변화·생태계보존 등 글로벌 이슈에 대응
- ◈ 안전하고 지속가능한 남극연구활동 지원기반 구축
- ◈ 남극 과학연구 및 거버년스에서 우리나라의 리더십 제고

전 략

추 진 과 제

남극연구 지평확대

- ① 남극연구를 통한 글로벌 환경변화의 예측·대응
- ② 남극 내륙진출과 미지·미답의 연구영역 개척
- ③ 실용화·상용화 및 4차 산업혁명에 대응한 융복합 연구 추진

남극연구 지원기반 선진화

- ④ 남극활동 안전시스템 및 연구인프라 고도화
- ⑤ 남극연구 진흥을 위한 인적역량 강화 및 국민저변 확대

남극 거버년스 리더십 제고

- ⑥ 남극 과학연구 분야의 국제협력을 통한 파트너십 강화
- ☑ 남극 환경보호 및 연구협력의제 발굴·선도

라. 추진전략 및 과제

□ 남극연구 지평확대

- 남극연구를 통한 글로벌 환경변화의 예측·대응
 - (과거환경 복원) 빙하코어*, 해양 퇴적물의 구성성분을 분석하여 남극의 환경변화 과정을 복원하고 기후변화 요인을 규명
 - * 수천 년 동안 쌓인 빙하에 파이프로 구멍을 뚫어 채취한 얼음조각
 - (현재환경 관측) 기후변화와 남극 해빙(解氷)이 전 지구적 해수면 상승 및 남극해 해양 생태계에 미치는 영향 파악
 - (미래변화 예측) 남극의 기후·빙권* 변화에 따른 육상·해양 생태계 반응 모델링과 중장기 예측 프로그램 개발
 - * 지표·해양 표면 위와 아래가 모두 눈·얼음 및 영구동토층으로 구성되어 있는 지역

○ 남극 내륙진출과 미지·미답의 연구영역 개척

- (내륙 진출) 독자적 내륙진출로(코리안 루트)를 개척하고, 세계 최초로 3,000m급 심부빙하* 및 2,500m급 빙저호** 탐사
 - * 3.000m 이상의 두께를 가진 육지의 빙하
- ** 수백m~수천m 두께의 남극 빙하 밑에 위치한 호수
- (미답지 연구) 우주기상·고층대기 관측시스템을 구축·운용하고, 서남극 해저 탐사를 통해 세계 최초로 남극권 고유 맨틀 발견
- 실용화·상용화 및 4차 산업혁명에 대응한 융복합 연구 추진
 - (국지생명과학) 저온에 적응한 남극생물의 유전적 특성을 활용하여 유용한 생명자원*을 발굴하고 실용화·상용화 기반을 구축
 - * 항생제 후보물질, 산업용 저온효소, 혈액·줄기세포 냉동 보존제 둥

- (첨단장비·기술) 극한지 탐사로봇과 관련 센서·무선통신 기술 개발 및 쇄빙선의 안전한 빙판하역을 위한 요소기술* 개발
 - * 빙판의 최대하중 평가기술(극지 도로·항만 등 인프라 건설에 활용) 등
- (산·학·연 협력) 산·학·연 협력프로그램(PAP, PIP)을 활용한 융·복합 과제 발굴 및 산업화 촉진을 위한 협동연구체계 구축

□ 남극연구 지원기반 선진화

- 남극활동 안전시스템 및 연구인프라 고도화
 - (안전시스템) 맞춤형 안전매뉴얼과 응급후송 등 현장의료지원 체계를 확립하고, 극지규약(Polar Code)에 대응한 활동기준 보완
 - (연구인프라) 한-이태리 활주로 공동운영을 통한 항공인프라 확보 및 쇄빙연구선 공동활용체계 구축 등 운영 효율 극대화
- 남극연구진흥을 위한 인적역량 강화 및 저변 확대
 - (전문인력 양성) 과학기술연합대학원(UST) 극지분야 석·박사과정 운영과 연구시료·장비지원을 위한 산·학·연 협력관 건립 추진
 - (대국민 교육·홍보) 맞춤형 교육·홍보, 직접 체험기회 제공 등 접점확대를 통해 남극연구에 대한 국민적 인지도와 지지확보

□ 남극 거버넌스 리더십 제고

- 남극 과학연구분야의 국제협력을 통한 파트너십 강화
 - (양자협력) 남극 관문지역의 연구·인프라 협력 거점* 운영을 활성화하고 주요 남극 연구국가·기관과의 연구협력 강화
 - * 한-뉴질랜드 남극협력센터(크라이스트처치), 한-칠레 남극협력센터(푼타아레나스)

- (다자협력) 남극과학연구위원회(SCAR)의 중장기 비전*과 연계하여 다국가 공동연구를 추진하고 남극연구의 국제공조체제를 강화
 - * 향후 20년간 우선해야 할 남극연구 6대 분야와 80개 과제를 제시(Horizon Scan, '14.8)
- (정보공유) 남극 빙하·생태계 모니터링 등 연구활동 정보 교환과 공유 활성화를 위한 서비스 체계 구축
 - * 한국극지데이터센터(KPDC). 분야별 시료정보 등 데이터베이스 고도화 추진

○ 남극 환경보호 및 연구협력의제 발굴·선도

- (환경모니터링) 킹조지섬과 테라노바만의 남극특별보호구역 (ASPA)과 해양보호구역(MPA)에 대한 생태계모니터링 강화
 - * (육상) 킹조지섬, 테라노비만의 남극특별보호구역에 대한 중장기 모니터링사업('17~'21) (해양) 남극해양생물자원보존위원회(CCAMLR)의 로스해 해양보호구역 생태계 모니터링 프로그램('17~'21)
- (남극 거버넌스) 남극조약협의당사국회의(ATCM) 주요이슈 논의를 주도*하고, 관련 국제기구·회의 주요 직위진출 확대 추진
 - * 남극활동에 대한 '새로운 사찰모델' 개발 제안 및 협의그룹 공동의장 수임('16~) 등

4. 참고사항

□ 국	내 남=	구 전문	가 자	문위	원회*	운영(*	′16.5~	·′16.11	1)	
* 남	극과학, :	과학기술	È정책, └	남극조	약, 국7	데협력	분야	총 8명	전문가료	릴 구성
								`	6.9~′16	.10)
* 국!	내 연구기	관·대힉	∤·학회·ረ	<u></u> 산업체	등 총	150여	명 대성	ŀ		
□ 제	3차 남	극연구	활동	진흥기	본계	획(안)	공청	회가	최(′17.	2)

제3차 남극연구활동진흥 기본계획('17~'21)(안)

2017. 4. 6.

관계부처합동

목 차

I. 수립 개요 ···································
1. 수립 배경 및 법적 근거 [
2. 수립 경과 및 체계 /
3. 남극 연구활동 진흥의 필요성 (
II. 제3차 기본계획 수립의 환경 분석 ···································
1. 제2차 기본계획의 성과와 반성 !
2. 남극연구의 환경 변화와 해외 동향 (
Ⅲ. 비전 및 목표 ······ 13
1. 남극연구활동의 중장기 방향 13
2. 비전과 목표 15
Ⅳ. 추진 전략
1. 남극연구 지평확대 16
2. 남극연구 지원기반 선진화 26
3. 남극 거버넌스 리더십 제고 3:
V . 추진체계 및 소요예산(안) ······· 37

I 수립 개요

1. 수립 배경 및 법적 근거

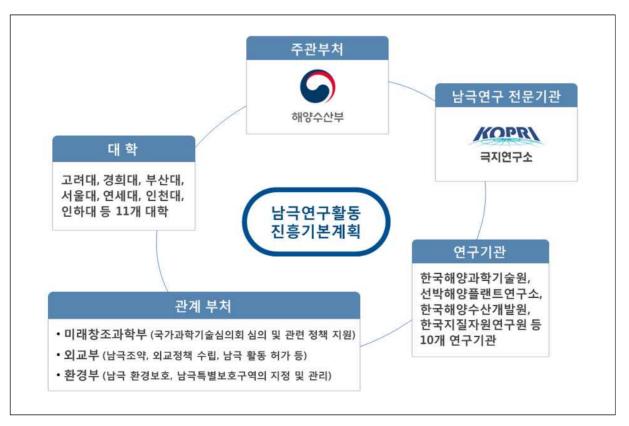
□ 수립 배경

- 남극연구는 **고위험·고비용·비상업적 특성**을 가진 기초과학중심의 거대 과학분야로 국가차워의 **중장기적 지워**이 **필수**
 - * 남극의 극한 환경과 해빙(海氷)·블리자드·크레바스 등 위험요소의 존재로 인해 안전한 남극활동을 위해서는 극지전용의 대규모 인프라 운용이 필요
- 남극연구활동진흥 기본계획('07~, 매5년)을 지속적으로 수립·시행하여, 남극활동을 체계적으로 지원하고 국가과학역량을 제고할 필요
- ⇒ 제2차 남극연구활동진흥 기본계획('12~'16)의 종료에 따라 그간의 성과를 평가하고, 최근 국내외 남극연구동향 및 환경변화를 반영하여 제3차 남극연구활동진흥 기본계획('17~'21)을 수립

<제2차 및 제3차 기본계획의 비교>

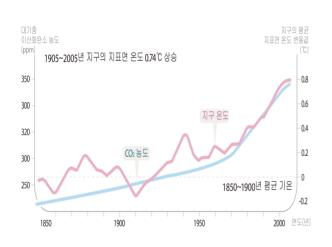
	목표·전략	주요 과제	비고
제2차	• 글로벌 남극연구 인프라 구축	- 장보고 과학기지 건설	
기본계획	▪ 우수 연구 성과 창출	- 아라온호 활용 남극해 연구	※ 인프라 구축 중심
제3차 기본계획	남극연구 지평확대남극연구 지원기반 선진화남극 거버넌스 리더십 제고	- 내륙진출로 개척(K-루트) - 해양보호구역(MPA) 생태계 연구 - 실용화·융복합 연구 활성화 - 항공망·제3기지 등 인프라 고도화 - 남극정책 역량강화 기반마련	(제2차 기본계획)에서 구축된 인프라의 본격 적인 활용과 연구역량 강화 중심(제3차 기본 계획)으로 전환

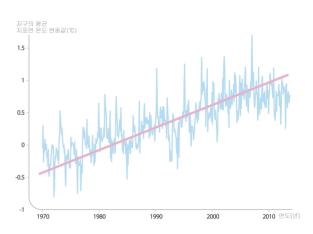
□ 법적 근거


- 「남극활동 및 환경보호에 관한 법률」제21조 및 동법 시행령 제26조
 - 남극활동 및 환경보호에 관한 법률 §21 ① 정부는 남극에 관한 연구활동의 진흥을 위하여 5년마다 다음 각 호의 사항이 포함된 남극연구활동진흥기본계획을 수립하여야 한다.
 - 남극활동 및 환경보호에 관한 법률 시행령 §26 ① 해양수산부장관은 법 제21조제1항에 따라 관계중앙행정 기관의 장의 의견을 들어 5년마다 남극연구활동진흥기본계획을 수립 하여야 한다.

2. 수립 경과 및 체계

□ 수립 경과


- 제3차 남극연구활동진흥 기본계획(이하, 기본계획) 수립을 위한 연구 용역 시행('16.5~'16.11)
- ㅇ 국내 남극 전문가로 구성된 자문위원회* 운영('16.5~'16.11)
 - * 남극과학, 과학기술정책, 남극조약, 국제협력 분야의 총 8명 전문가로 구성
- 국내 남극 연구자·전문가 대상 연구수요조사 실시('16.9~'16.10)
 - * 국내 연구기관·대학·학회·산업체 등 총 150여 명을 대상으로 수요조사 의뢰
- 기본계획 수립을 위한 관계부처 회의('16.11)
- 기본계획(안)에 대한 공청회 개최('17.2)


□ 수립 체계

3. 남극 연구활동 진흥의 필요성

- □ 최근의 이상 기후의 원인을 분석하고 체계적으로 대응할 필요
 - 최근 우리나라를 포함한 동아시아와 북미, 유럽 지역에서 한파,
 폭설, 폭염 등 극단적인 기상 현상이 빈번히 발생
 - 우리나라에도 직접적인 피해를 주고 있는 이러한 기상이변 현상은 지구 온난화에 의한 극지역의 빙하 감소 등과 밀접한 관련이 있을 것으로 추측되는 상황
 - ⇒ <u>지구적인 환경 변화의 **원인 규명**과 미래 예측을 위한 **과학연구**가</u> **시급**하며, 이러한 연구활동을 뒷받침하기 위한 **지원체계**가 **절실**
 - * 남극지역은 극한 환경으로 지구환경 변화의 역사를 보존하고 있는 지역으로서 이미 세계 29개 국가가 41개 상설과학기지를 운영 중임

- □ 미답지(未踏地)이자 무주지(無主地)인 남극을 선제적으로 연구할 필요
 - 남극은 극한환경으로 인위적인 활동이 자유롭지 않고, 특정 국가에 의한 **개발과 영유권 주장이 제한**되는 특수성을 지닌 지역
 - * (남극조약 제4조 및 제5조) 남극에 대한 특정 국가의 주권·청구권 포기와 핵· 방사성 물질의 남극 내 반입 금지를 선언

- 정치·외교적 거버넌스는 제한되어 있는 반면, 남극에 대한 **과학적** 조사와 연구활동의 국제협력은 장려되고 있음
 - * (남극조약 제9조) 남극지역에 있어서의 과학적 연구와 국제협력을 촉진하기 위한 조치를 입안하는 것을 각 국 정부에 권고
- 남극은 과학적 조사·연구의 대상임과 동시에 우리나라에게는 수산· 광물 자원 등 **잠재적인 자원**을 **보유**한 대륙으로서의 **가치**를 지님
 - * 우리나라는 남극해의 주요 어업국으로 이빨고기(914톤, 세계1위)와 크릴(20,264톤, 세계2위) 조업 중(2015년 기준)
 - ** 남극대륙·해저에는 금·은·철 등의 광물자원이 대량 부존된 것으로 추정 (현재는 남극환경보호의정서에 의해 광물자원 개발활동이 제한되고 있음)
 - → 기후변화 등 인류공동의 현안을 해결하기 위한 남극 과학연구를 촉진하고, 실질적인 국제협력 체계를 구축하기 위한 전략을 주도하여 중·장기적으로 향후 남극지역에서의 발언권과 영향력을 증대

□ 남극대륙 진출을 위한 국민적 동의와 정책적 당위성 확보

- 현재까지 진행된 **남극 연구활동의 성과**와 **향후 연구활동의 방향**을 **체계적으로 제시**함으로써 남극 진출에 대한 국민적 지지를 확보
- '남극연구 30주년'('88.2, 남극세종과학기지 설립)을 계기로 국민 체험형 교육·홍보 프로그램을 마련·시행
- 국민적 지지를 바탕으로 남극연구활동을 진흥하기 위한 국가적 전략과 정책이 시행되어야 하는 당위성과 구체적인 근거를 마련
- 남·북극을 연계할 수 있는 법적근거(가칭 극지활동진흥법)와 남·북극 정책을 통합하는 기본계획을 마련
- ⇒ 남극 연구활동의 당위성과 시급성에 대한 국민적 이해와 국가적
 컨센서스를 바탕으로 향후 연구활동을 체계적으로 추진

III 제3차 기본계획 수립의 환경 분석

1. 제2차 기본계획의 성과와 반성

◇ 새로운 연구 인프라의 확보·운영을 통해 세계 최고 수준의 연구성과를 창출하고, 기초과학 뿐만 아니라 실용화·상용화의 바탕이 되는 융·복합 연구를 추진

□ 남극연구활동의 글로벌 수준 도약

- (기존 인프라) 기 운용중인 연구 인프라의 효율적 활용을 통해 연구 성과를 제고하고, 국제협력을 강화
- 아라온호는 남극해(로스해, 아문젠해, 웨델해, 중앙해령)에서 연평균 60일 이상의 연구활동을 수행하고, 세계적 수준의 우수연구 성과 창출
- * 남극 중앙해령의 해저지형과 기후변화의 상관성 규명('15.2, Science), 남극해 식물플랑크톤의 광합성효율 세계최초 규명('16.1, Science) 등
- 아라온호를 활용하여 남극해에서 조난된 선박을 연이어 구조하며 국제사회에서 우리나라의 국격을 제고
- * 스파르타호('11, 러시아), 정우2호('12, 대한민국)에 이어 썬스타호('15, 대한민국) 구조
- 세종 과학기지 보수공사에 착수('15~)하여 노후 시설의 안전성을 확보하고 연구공간을 확충하는 등 연구 환경을 개선
- ⇒ (반성·시사점) 아라온호 취항 이후 거둔 세계적 수준의 연구성과를 지속적으로 창출하기 위해 남극연구 항해일수를 확보하고, 범부처 공동활용 방안을 마련하는 등 인프라 활용의 효율성을 극대화할 필요
- (신규 인프라) 새로운 연구 인프라 구축을 통해 남극연구활동의 지원체계를 선진화하고, 과학기지·쇄빙연구선 간 역할분담과 특성화를 통해 연구 인프라 운영의 효과성을 제고

- **장보고 과학기지 준공**('14)으로 2개 이상의 남극 상주과학기지를 보유한 세계 10번째 국가로서 대륙연구 및 내륙진출의 거점 확보
- **극지종합상황실 설치**('14)를 통해 과학기지와 쇄빙연구선의 운영· 운항, 기상, 인원, 안전 등을 실시간 모니터링시스템 구축
- ⇒ (반성·시사점) 장보고과학기지를 기반으로 남극연구 활동의 지역· 범위가 확대됨에 따라 종합적 안전시스템 확립이 필요
- ⇒ 남극 내륙을 향한 독자적 육상경로(코리안 루트)를 개척하고, 대륙 기반 연구를 주도할 기지인프라*(제3 과학기지) 확보 필요
 - * 남극점(미국, 아문센-스콧 기지), 가장 추운 곳(러시아, 보스톡 기지) 등
- □ 다양한 분야의 융·복합 연구를 통해 남극연구의 새로운 전기를 마련
 - (기초연구) 전 지구적 기후변화 문제에 대응하기 위한 빙권변화 연구를 비롯하여 운석·대기 등 다양한 분야의 기초연구를 수행

분야	연 구 내 용
빙권	남극 아문젠해 빙붕의 붕괴원인 규명('14), 남극 빙하기-간빙기 순환증거 발견('15)
운석	세계적으로 희귀한 달 운석 발견('13) 등 세계 5대 운석연구국가로 발돋움
대기	극지역 대기 중 요오드 물질의 생성 반응 규명('16)

- (실용화·상용화) 극지생물의 저온적응 특성 연구 등 극지 생명자원, 유전공학 분야 등을 중심으로 응용연구에 착수
 - * 남극 고등생물 최초로 남극대구의 전체 유전자 염기서열 해독·분석('14), 남극 식물(남극 좀새풀)에서 저온적응 핵심유전자 분리('15)
- ⇒ (반성·시사점) 우수한 기초과학 연구의 성과를 바탕으로 신성장 동력·신산업 창출을 위한 기반마련과 연구저변 확대가 필요
- □ 남극 연구활동의 성과와 향후 계획을 홍보·공유하는 노력을 지속
 - 장보고기지와 아라온호 등 새롭게 구축된 연구 인프라를 활용한 연구성과를 언론과 학술지 등을 통해 홍보·공유
 - * (장보고기지) 파인아일랜드 빙하의 융빙과정을 규명하여 Science지에 발표('14.1) (아라온호) 중앙해령 해저지형과 기후변화의 상관성을 규명하여 Science지에 발표('15.2)

제2차 남극연구활동진흥기본계획의 주요 성과

남극 아문젠해 빙붕의 붕괴원인 규명('14)

세계에서 가장 빠르게 녹고 있는 남극 아문젠해의 파인아일랜드 빙하의 융빙 과정을 규명하고, 남극 빙붕변화와 적도 라니냐 현상의 상관성 발견

남극대구의 전체 유전자 염기서열 해독·분석('14)

남극 고등생물 최초로 유전체를 완전 해독하여, 남극 생물의 저온환경 적응· 진화 메커니즘의 이해에 대한 연구역량 확보

남극 빙하기-간빙기 순환증거 발견('15)

남극 중앙해령의 현무암질 해양지각에서 빙하기-간빙기 순환기록의 증거를 발견하고, 중앙해령 형성과 빙하주기간의 인과관계 입증

남극 식물에서 저온적응 핵심유전자 분리 성공('15)

남극 좀새풀로부터 저온적응 핵심유전자(DaCBF7) 분리에 성공하여, 냉해에 취약한 농작물의 생산성 향상의 잠재적 가능성 확인

남극 중앙해령의 열수구 및 신종 생명체 발견('15)

남극 중앙해령 열수구(해저온천) 발견, '무진(霧津)'으로 명명하고, 신종 생명체 (바다 게)를 채취하여 '아라오나'로 명명

극지역 대기 중 요오드 물질의 생성 반응 규명('16)

다량의 구름생성을 통해 지구온난화를 지연시키는 요오드 물질 생성 반응을 규명하여 지구온난화 및 기후변화 대응의 단서 확보

세계적으로 희귀한 달 운석 발견('13)

운석연구 착수 7년 만에 달 운석 등 희귀 운석을 발견함으로써,미·러·중·일과 함께 세계 5대 남극운석 연구국가로 발돋움

원격탐사 활용 서남극해 국제공동연구 추진('14)

서남극해 원격탐사연구(STAR)을 통해 $11\sim3$ 월에만 가능했던 남극해 현장 관측을 연중 수행으로 확대

남극장보고과학기지 건설('14)

장보고과학기지 준공으로 2개 이상의 남극 상주과학기지를 보유한 세계 10번째 국가로서 대륙연구 및 내륙진출의 거점 확보

극지종합상황실 설치('14)

과학기지와 쇄빙연구선의 운영·운항, 기상, 인원, 안전 등을 실시간 모니터링할 수 있는 종합상황실 설치

아라온호, 우리나라 남극연구 발전의 산실

▶ 남극해(로스해, 아문젠해, 중앙해령, 웨델해 등)에서 연평균 60일 이상의 연구 활동을 수행하고. 세계적 수준의 우수연구 성과 창출

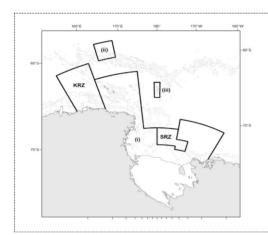
아라온호. 남극 결빙해역의 조난선박 구조

남극해에서 조난된 러시아의 스파르타호('11)에 이어 우리나라 정우2호('12), 썬스타호('15)를 구조하여, 국제사회에서 우리나라의 국격 제고

2. 남극연구의 환경 변화와 해외 동향

□ 남극연구의 환경 변화

- 남극과학연구위원회(SCAR)의 중장기비전(Horizon Scan) 발표('14.8)
- 향후 20년간 우선해야 할 남극연구 6대 분야와 80개 과제를 제시
- * 남극의 대기·해양이 지구 전체에 미치는 영향 등 기후변화 분야를 중심으로 지질, 생물, 천문, 대기 등 다양한 분야의 연구 분야를 포함
- 기존의 자연과학분야 뿐만 아니라 남극 출입의 규제와 방문에 따른 영향 등 **인문·사회과학적 분야도 연구대상으로 취급**하기 시작


<SCAR의 중장기비전과 이와 대응되는 제3차 기본계획의 전략·추진과제>

남극과학연·	구위원회(SCAR)의 중장기비전(Horizon Scan)	제3차 닏	· 다극연구활동진흥 기본계획
6대 연구 분야	80개 과제 중 대표 과제	전략	추진과제
남극 대기·해양이 지구 전체에 미치는 영향	대기와 해양, 빙권의 상호작용대기중 오존층 회복과 온실기체 농도의 전지구적 영향남극해 열순환과 기후변화의 영향		▪ 남극연구를 통한 글로벌 환경변화의
남극 빙하와 해수면 높이	- 급격한 남극해 빙상의 해빙 원인 - 빙상 기저층의 상태와 빙상의 이동·형성과의 관계		예측·대응
남극얼음 아래 지각 변동	- 빙상에 대한 지각의 반응 - 남극대륙의 지각과 맨틀의 구조 - 대륙판의 생성과 균열 역사 규명	남극 연구 지평 확대	▪ 남극 내륙진출과 미지·미답의 연구
남극에서의 우주관측	- 태양풍 발생에 따라 유입되는 고에너지 입자에 대한 이해 - 빙저호 연구를 통한 목성, 토성의 위성 환경 추측 - 운석을 이용한 태양계 형성과 우주생물학 연구		영역 개척
남극 생물의 진화와 생태	- 남극 생물의 진화 과정 규명 - 변화하는 남극 생태계 관찰 및 변화 원인규명 - 환경변화에 민감한 생물종 규명		■ 실용화·상용화 및 4차 산업혁명에 대응한 융·복합 연구 추진
남극에서의 인간 영향 및 저감방안	- 현재 남극 출입 규제의 효과 - 국제정책이 남극 방문 동기형성에 미치는 영향 - 남극생태계의 현재와 미래 가치 및 보존방안	남극 거버 넌스 리더십 제고	 남극 과학연구 분야의 국제협력을 통한 파트너십 강화 남극조약 의무이행 및 연구협력의제 발굴·선도

[※] 현재 남극국가프로그램운영자위원회(COMNAP)에서는 'Horizon Scan' 연구결과의 효과적인 수행을 위해 각 국 남극 프로그램의 우선순위·전략과 연동을 지원

- 남극생물자원보존위원회(CCAMLR)의 남극해 해양보호구역(MPA) 확대
- 남극생물자원보존위원회(CCAMLR)는 남극 장보고과학기지 인근 로스해*에 세계 최대 규모의 공해상 해양보호구역을 지정('16.10)
 - * 남극해의 12%가량을 차지하고 있으며, 펭귄과 고래, 바다표범 등 동물 1,000여 종이 서식하는 세계에서 생태계가 가장 잘 보존된 바다 중 하나로 평가

<로스해 해양보호구역 지정>

- 일반보호구역(GPZ), 특별과학조사구역(SRZ), 크릴 연구수역(KRZ) 등을 설정하고 향후 35년간 조업제한 및 과학 연구활동 강화의무를 부여
- 위원회는 남극생물자원과 이에 영향을 미치는 빙상· 기후·해양 등 제반 환경에 대한 과학적 정보를 각 회원국에게 요청
- 조업국-비조업국 간 의견차이로 지연되었던 로스해의 MPA지정으로, 향후 남극해의 대규모 MPA 지정이 가속화 될 것으로 예상
- * 남극조약협의당사국회의(ATCM)와 CCAMLR는 2004년부터 남극해 전 해역을 9개 대규모 권역으로 나누어 해양보호구역 설정을 기획

○ 시사점

- 남극 연구활동의 영역과 범위가 넓어지는 국제적인 추세에 맞추어 다양한 분야의 연구를 체계적이고 효율적으로 수행할 수 있도록 범부처적인 연구 활동 지원체계를 구축할 필요
- 남극해에서의 원양어업 등 자원획득에 못지않게 남극해 생태계 보전을 위한 과학연구와 환경보호활동에 대한 지원을 확대하여, 남극 거버넌스에서의 의사결정 과정에 영향력을 제고할 필요

□ 주요 국가의 남극 연구활동 동향

- ◇ 남극과 지구환경과의 관계*가 각 국의 남극연구 비전에 공통적으로 포함
 - * 남극을 통한 지구시스템의 이해, 남극환경변화가 지구에 미치는 영향 등
- ◇ 남극 지역별·과학기지별로 특화된 연구활동을 추진하는 경향
 - * 남극점의 미국 아문센-스콧기지는 우주천문을, 보스톡 호수의 러시아 보스톡 기지는 남극생태계를, 남극 최고점의 중국 쿤룬기지는 빙하를 중점 연구
- ◇ 5년 또는 10년 단위 이상의 중·장기 남극연구계획 및 프로그램 추진
 - * 호주('11~'20), 뉴질랜드('10~'20), 브라질('14~'23), 영국('16~'20), 일본('16~'21) 등
- ※ 제39차 남극조약협의당사국회의(2016)에서 남극환경보호의정서 제7조(광물자원활동 금지)를 재확인하는 결의안이 만장일치로 채택됨에 따라 자원개발 등 남극에서의 경제적 활동은 장기간 보류되고, 각 국은 과학연구와 환경보호 중심의 남극활동을 지속할 것으로 전망
 - 미국 : 남극 리더십과 영향력 유지·강화
 - (정책방향) 남극의 평화적 이용을 주도하면서 개별국가에 의한 영유권 주장에 강하게 반대하는 한편, 남극에 대한 실질적인 연구를 통해 남극조약 관련 회의에서 자국의 위상과 영향력을 확대
 - (과학연구) ^①해수면 상승의 크기와 속도, ^②남극 생명의 적응과 진화, ^③우주의 기원 규명을 '3대 전략적 연구 우선순위(National Academies)'로 추진
 - (인프라) 세계 최대의 남극 과학기지(맥머도기지)를 포함하여 3개의 상주기지와 3척의 쇄빙선을 운영
 - 일본 : 전략적 투자와 연구 인프라 강화
 - (정책방향) 전 지구적 기후변화 연구와 환경관련 연구투자 비중을 확대하는 등 연구 활동에 대해 전략적으로 투자하고 있는 한편, 남극해에서의 조업 등 자원획득에도 관심

- (과학연구) '남극으로부터 다가오는 지구시스템 변동'을 주요 주제로, ^①남극-지구 대기시스템, ^②대기-빙상-해양의 상호작용, ^③남극 고환경 복원을 주요 연구 분야로 추진*
 - * (제9기 남극지역관측 6개년 계획, '16~'21) 국제공동연구에서의 리더십 확보와 국제협력 강화, 차세대 연구인력 양성 프로그램 등을 포함
- (인프라) 쇼와 기지(1957~) 등 4개의 남극기지(상주1, 하계3)와 쇄빙 연구선 '시라세'에 이어 신규 쇄빙연구선 건조 추진 중

○ 중국 : 국가 차원의 대규모 투자 추진

- (정책방향) 남극활동을 국가적인 해양진출 전략의 차원에서 접근하고 있으며, 우주개발계획과 더불어 극지연구의 전략적 체계와 인프라를 확충
- (과학연구) 해양-해빙-대기 상호작용, 빙붕-해양 순환작용, 기지주변 종합모니터링, 빙하탐사 등 5가지 프로젝트로 구성된 PANDA(Prydz Bay, Amery Ice Shelf and Dome A Observation) 프로그램 추진
- (인프라) 남극 2개 상주기지에 이어 2009년에 남극 쿤룬기지를 건설하고, 제2쇄빙연구선(10,000톤급) 건조를 추진

○ 영국 : 남극연구 선도국가의 위상 유지

- (정책방향) 가장 오래된 남극 영유권 주장국이지만, 영토정책과 환경정책을 분리하여 남극환경과 생태계보호에도 높은 우선순위를 부여하며 남극연구 선도국으로서의 위상 확립을 도모
- (과학연구) '지구를 위한 극지과학(Polar Science for Planet Earth, '09~)' 프로그램 아래, 기후·대기화학·생태계·환경변화·빙상·극지해양 등 6개 중점분야('16~'20)를 설정하고, 첨단 극지연구 기획·발굴*도 병행
- * 영국남극조사소(BAS)와 케임브리지대학이 공동으로 혁신센터(Aurora Cambridge)를 설립하여 미래 극지연구를 주도할 혁신적 연구주제 발굴 및 수행('17 개소 예정)
- (인프라) Halley 기지 등 3개의 상주기지와 2척의 쇄빙연구선을 운영

<각 국의 남극연구활동 개요 >

국가	남극연구 프로그램	주요내용	인프라 운영현황
미국	미국남극프로그램 (USAP)	- 해수면 상승의 크기와 속도, 남극 생명의 적응과 진화, 우주의 기원 규명을 3대 전략적 우선순위 (National Academies)로 추진	과학기지 3개 쇄빙선 3척
영국	지구를 위한 극지과학(PSPE) 프로그램(2009~)	- '16~'20 우선과제 : 극지의 변화, 지구와 극지, 인간과 극지, 극지첨단(지식), 극지전문가활용	과학기지 2개 쇄빙연구선 2척 항공기 5대
독일	변화하는 지구속의 극지와 연안(PACES)	- 지구의 과거-현재-미래 지구시스템의 핵심변화 규명 - 지구환경, 지질 및 지구물리, 극지생태계 등 기초 및 원천과학연구에 높은 투자 비중	과학기지 3개 쇄빙연구선 1척 (후속선 건조 중)
일본	제9기 남극지역 관측계획 (2015~2020)	- 과학연구, 연구기반, 국제협력 등 종합정책 - '남극으로부터 다가오는 지구시스템 변동'을 주제로, 남극-지구 대기시스템, 대기-빙상-해양의 상호 작용, 남극 고환경 복원을 3대 분야로 설정	과학기지 4개 쇄(내)빙연구선 2척 (10천톤급 건조 중)
중국	PANDA 프로그램	 거점연결형(Prydz Bay, Arery Ice Shelf, and Dome A observation) 서베이 프로그램 해양-해빙-대기의 상호작용, 빙붕-해양 순환작용, 기지주면 모니터링 및 빙하탐사 등 5개 프로젝트 	과학기지 4개 쇄빙연구선 1척 (14천톤급 건조 중)
호주	남극과학 전략계획 (2011~2020)	- 4대 테마 : 기후 프로세스 및 변화, 육지 및 근해 생태시스템, 남빙양 환경시스템, 프론티어 과학 - 대외 개방으로 우수 연구프로그램 유치	과학기지 3개 쇄빙연구선 1척
뉴질랜드	남극 및 남빙양 과학 : 2010~2020 방향성 및 우선순위	- 기후·빙권·대기, 육상 및 해안 생태계, 남극해 보존 및 자원관리 등 3대 총괄 연구 분야 선정 및 추진 - 남극연구소(NZARI) 중심 남극 해빙, 해양 연구에 집중	과학기지 1개
브라질	남극과학연구 행동계획 (2014~2023)	- 5대 프로그램 : 빙권, 남극 생태계, 기후변화 및 남빙양, 지구 역학 및 지질학, 고층대기와 우주 상호작용 - 신규 분야로 사회과학 및 인간 생물학 등 연구 추진	과학기지 1개
칠레	PROCIEN 프로그램	- 6대 연구분야 : 남극 생태계, 회복력 및 적응력, 기후변화, 물리 및 지구과학, 미생물학, 남극환경 - 최근 연구 프로그램과 지원기관 다변화 강화	과학기지 4개 쇄빙연구선 1척

Ⅲ │비전 및 목표

1. 남극연구활동의 중장기 방향

□ 기본 방향

- 국가 과학연구 역량을 견인하는 가시적 성과 창출
- 지난 기본계획과 연계하여 그 성과를 지속적으로 발전, 확대시킬 수 있도록 기본계획을 수립
- 남극 연구활동 지역과 범위를 확대하고 실용화가 가능한 응용연구 분야의 발굴을 통해 우수성과를 창출
- 연구 인프라 구축과 운영의 효율성 제고
- 세종·장보고 과학기지와 쇄빙연구선 아라온호 등 극지 인프라의 효율적 연계·활용 및 제3과학기지 건설 검토
- 대형 인프라(연구선)의 범부처·외부기관 공동 활용 및 협력연구 활성화를 위한 개방형 운영 기반 마련
- 연구활동을 통해 국제사회에 기여하고 국가위상을 제고
- 국제위상에 걸맞은 지속적인 투자를 통해 과학연구의 성과 강화
- 특히, 남극 육상·해양의 생태계 보전을 위한 과학연구와 환경보호를 위한 모니터링 활동을 확대·강화하여 국가이미지 제고

□ 중장기 추진전략

◇ 역량축적기('07~'16)를 거치면서 축적된 연구·인프라 역량을 본격적으로 활용할 수 있도록 도약기('17~'21)이후의 전략을 수립

○ 제3차 기본계획 기간('17~'21) : 남극활동 도약기

- 장보고과학기지 등 신규 인프라를 기반으로 연구 활동 지역과 범위를 확대하고, 국제적으로 선도할 수 있는 연구에 착수
- 남극인프라·연구활동의 확대에 따라 안전사고 예방과 응급의료 지원을 위한 종합안전시스템을 확립
- 과학연구를 통해 기후변화 등 글로벌 현안 해결에 기여하고, 남극 환경 보전을 위한 육상·해양보호구역 생태계 연구 및 보호활동 확대

○ 제4차 기본계획 기간 이후('22~) : 남극활동 주도기

- 주요 연구분야의 국제수준 도달, 국제 공동연구 주도
- 연구 성과를 기반으로 남극 거버넌스에서 선도적 역할 수행

2. 비전과 목표

비전

인류공동의 현안해결에 기여하는 남극연구 선도국

목표

- ◈ 기후변화, 생태계 보존 등 글로벌 이슈에 대응
- **◈** 안전하고 지속가능한 남극연구활동 지원기반 구축·운영
- ◈ 남극 과학연구 및 거버넌스에서 우리나라의 리더십 제고

전 략

추 진 과 제

남극연구 지평확대

- ① 남극연구를 통한 글로벌 환경변화의 예측·대응
- ② 남극 내륙진출과 미지·미답의 연구영역 개척
- ③ 실용화·상용화 및 4차 산업혁명에 대응한 융·복합 연구 추진

남극연구 지원기반 선진화

- ④ 남극활동 안전시스템 및 연구인프라 고도화
- 5 남극연구 진흥을 위한 인적역량 강화 및 국민저변 확대

남극 거버년스 리더십제고

- 6 남극 과학연구 분야의 국제협력을 통한 파트너십 강화
- **7** 남극 환경보호 및 연구협력의제 발굴·선도

Ⅳ 추진 전략

전략 1 남극연구 지평확대

1-1. 남극연구를 통한 글로벌 환경변화의 예측·대응

□ 목 표

○ 전 지구 기후와 생태계에 영향을 미치는 남극 환경의 복원, 관측, 예측 연구를 통한 지구환경 시스템의 종합적 이해

□ 필요성

- 남극은 지구온난화 등 **글로벌 기후변화의 영향**이 **크게 미치는 지역**으로 과학연구를 통한 지구환경변화의 예측과 대응이 가능
- 급속하게 진행되는 기후변화 등 글로벌 이슈 해결을 위한 과학적 연구 활동을 통해 남극 육상 및 해양 생태계 보전 등 국제적 활동에 기여

□ 추진현황

- **빅토리아랜드의 빙하코어***를 **시추**하여 과거 2,000년간의 기후변화를 복원하고, 홀로세 기간(1만년전~현재) 중의 **해양 퇴적물 분석**을 통해 남극 화경을 이해
 - * 빙하코어: 수천 년 동안 쌓인 빙하에 파이프로 구멍을 뚫어 채취한 얼음조각

< 빙하시추기 및 시추 현장 >

< 시추한 원통형의 빙하코어 >

- 아문젠해의 온난화 원인 규명을 통해 남극 해양생태계의 기본적인
 구조와 기능을 파악
- 빅토리아랜드의 빙권 시스템(빙저호-빙하-빙설) 변동 원인규명을 위한 종합 관측망 운영과 기초자료 획득

< 빙권변화 관측시스템 >

□ 주요내용

- 남극 과거환경의 복원과 변화과정 규명
- 빅토리아랜드 빙하코어의 구성성분을 분석하여 **과거 1만 년간의** 기후변화를 고해상도로 복원하고, 기후변화 모델을 검증·개선
- * 세계 최장수준의 해상도 확보 및 분석속도 개선 : ('17) 연단위 해상도 분석, 분석속도 0.5m/일→ ('21) 계절단위 해상도 분석, 분석속도 5m/일
- 로스해 해양 퇴적물 코어를 분석을 통해 **과거 200만년 간의 빙상-해양-**기후 변화를 정밀 복원하고, 그 상호작용과 전 지구적 영향을 이해
- * ('17) 최대 18m 퇴적물 코어 채취→ ('21) 30m 길이의 코어 채취(세계 최장: 70m, 독일)

○ 남극 환경·생태계 변화 모니터링

- 이산화탄소 증가 등 외부 요인에 따른 기후반응과 수치모델 분석을 통해 남극 **기후변화의 지역적 차이** 원인규명과 **온난화 패턴예측** 정확도 제고
- * ('17) 국지규모 10년 이내 기후요소 추세분석→('21) 지역규모 30년 이상 기후요소 추세분석
- 남극대륙의 빙하 후퇴 속도 현장실측과 전지구적 해양변동 예측 모델링* 및 세계최초 2차 환경변화 연구(융빙수 유입에 의한 생태계 변동 평가)
- * 남극 빙하후퇴 국제공동연구(NECKLACE Program) 참여 및 역할 분담 수행
- 남극 로스해 해양보호구역(MPA)의 생태계 구조연구와 환경변화요인의 분석을 통해 남극 해양생태계 보전 및 체계적인 관리방안 수립
- * 남극 해양생물자원보존위원회(CCAMLR) 과학위원회 및 생태계 모니터링 프로그램 (CEMP)에 연구자료 발표 및 표준화된 조사자료 제출

< 해양순환에 의한 융빙 과정 >

< 남극 로스해 생태계 보전 연구개념도 >

○ 남극 환경의 미래예측모델 개발

- 세종 기지 인근 **남극반도**의 **기후·빙권^{*} 장기관측**을 위한 거점을 확보하고, 환경변화 모델링을 통해 남극반도 **연안해양의 미래 시나리오** 작성
- * 지표·해양표면 위와 아래가 모두 눈·얼음 및 영구동토층으로 구성되어 있는 권역
- 기후변화에 의한 육상생물의 반응과 분포변화 모델링기술 개발을 통해 남극환경 및 육상생태계 보전 정책수립에 기여
- * 세종 과학기지 인근 킹조지섬 바톤반도의 생물다양성 정밀지도 구축('19, 80%), 생물(선태류, 지의류)반응 모델링 확보('19, 50%)

2016 이전	2017	2018	2019	2020	2021	2022 이후
빙ㅎ	빙하코어 활용 홀로세의 빅토리아랜드 기후변화 복원					
	남극반도 및 로스해 200만년의 고환경변화 복원					
남극기후변화의 지역적 차이 원인 규명						
	아문젠 빙붕소멸 속도와 해양변동 추세 분석					
장보고기지	장보고기지 주변 빙권변화 진단, 원인규명 및 예측					
	로스해 해양생물자원 보전 연구					
	킹조지섬 육상생태계 변화 예측 기술 개발					
		남극반도	연안해양시	스템 변화 :	2050 전망	

선진연구 대비 국내수준				
2021				
100%				
45%				
80%				
40%				
60%				
40%				
70%				
70%				

※ [참고] 선진연구 대비 국내수준

(0~20%) 진입: 해당 연구분야에 착수하는 단계

(20~40%) 추격: 해당 연구 분야에 인프라를 구축하고 연구 성과가 창출되기 시작하는 단계

 $(40\sim60\%)$ 경쟁력 확보: 연구 성과가 본격 생산되지만 아직 선진 연구기관과의 차이가 존재하는 단계

(60~80%) 경쟁력 심화: 연구 성과의 질이 향상되어 선진 연구기관과 약간의 차이가 존재하는 단계

(80∼100%) 대등·초월: 뛰어난 연구성과가 생산되어 선진 연구기관과의 차이가 거의 없거나 초월한 단계

□ 기대효과

- 미래 지구 기후·환경 변화 대응을 위한 예측 모델 검증·개선
- ㅇ 전세계 해수면 변동에 대한 남극 빙상의 기여도 파악
- ㅇ 미래 남극 해빙변화와 온난화 패턴 예측의 정확도 향상
- ㅇ 남극해 해양생물자원의 보전과 합리적인 관리방안 도출

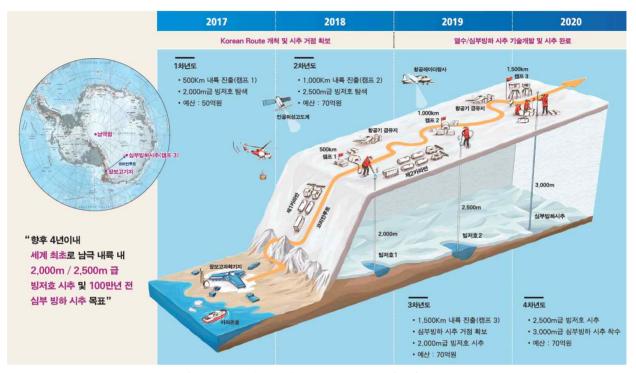
1-2. 남극 내륙진출과 미지·미답의 연구영역 개척

□ 목 표

○ **남극 내륙 진출로**(코리안 루트)를 **개척**하여 선도적인 대륙 연구에 착수하고, 미지(未知)·미답(未踏)의 유망 연구영역을 발굴하여 도전

□ 필요성

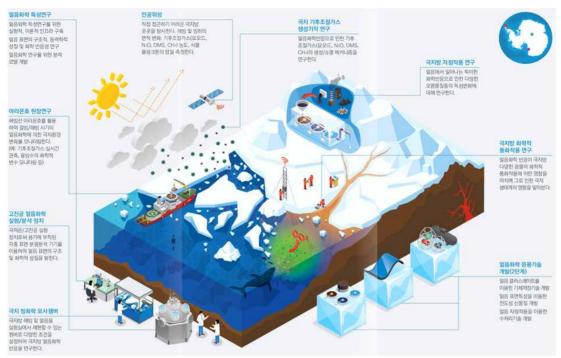
- 남극대륙 진출 후발국으로서 **단기간에 국제적 위상**을 **제고**하기 위해 빙저호·심부빙하 등 첨단 연구 분야에 전략적으로 투자할 필요
- 미답지(서남극 맨틀, 중앙해령) 탐사와 미개척 분야 연구(얼음의 화학적 특이성 연구 등)를 통해 실용화 가능성 탐색


□ 추진현황

- 세종·장보고과학기지에 극지 우주환경을 지상관측 할 수 있는
 인프라 구축을 추진
- 남극 중앙해령에서 최초의 **열수 분출구*** 발견
 - * 화산활동으로 인해 해저에서 섭씨 300℃의 뜨거운 물과 검은 연기를 뿜어내는 구멍

□ 주요내용

- ㅇ 독자적인 남극내륙 진출로 개척을 통한 대륙연구 기반 마련
- 남극점을 향한 독자적 육상경로(코리안 루트, 3,000km)를 개척하고, 이동형 하계캠프 확보 및 남극 내륙의 제3과학기지 건설 검토


- 미개척 첨단 연구분야인 남극 내륙의 **빙저호 탐사**와 100만년 전 기후복원을 위한 **심부빙하 시추**
- * 빙저호 : 수백m~수km 두께의 남극 빙하 밑에 위치한 호수
- * 세계최초 3,000m급 심부빙하 시추기술 및 빙저호 탐사를 위한 2,500m급 열수시추 기술개발

< 남극 내륙진출 및 대륙 연구사업 개요도 >

- 남극 내륙(빅토리아랜드)에 **지질·운석 연구**를 위한 **탐사거점** 4곳을 **확보**하고, 지질정보·우주물질 획득을 통해 지각진화와 행성 형성과정 규명
- 미답지 연구 등 유망 연구 분야 선점
- 지구에서 가장 가까운 우주환경인 **극지 고층대기관측**을 위한 지상 **인프라**를 **구축**하고, 우주 기상변화 예측의 정확도 제고
- * 한국천문연구원, 기상청 국가위성센터, 국립전파연구원 우주전파센터 등 주요 우주기상 연구기관과 공동연구 추진
- 남극 해저 지각구조와 중앙해령 연구를 통해 세계 최초로 남극권 고유 맨틀을 발견하고 특성을 규명하여 지구지각 형성에 대한 이해를 제고

- 얼음에서 일어나는 **화학반응의 특이성 규명**을 통해 극지환경의 새로운 현상을 이해하고, **오염물질 분해** 등 **응용기술 개발** 및 **선점**

< 얼음화학 특성 연구사업 개요도 >

2016 이전	2017	2018	2019	2020	2021	2022 이후
	남극내륙을 향한 코리안 루트 개척					
	심부빙하·빙저호 시추기술 개발					
빅토리아랜드 지각진화 및 행성형성과정 연구						
	우주환경과 저층대기에 의한 극지고층대기 변화					
서남극 열개구조와 남극 중앙해령 맨틀의 상호연관성						
얼음의 화학적 변화로 인한 남극 자연현상 규명				상 규명		

선진연구대비 국내수준				
2016	2021			
10%	60%			
50%	100%			
30%	80%			
30%	60%			
40%	70%			
0%	50%			

□ 기대효과

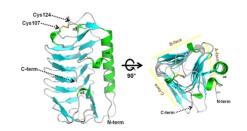
- 남극 내 연구거점 확장(제3과학기지 후보지 선정 및 남극 내륙 진출로 개척)
- 초대형 융·복합 연구과제인 빙저호 탐사와 세계 최고 수준의 심부 빙하시추 기술개발을 통해 선진 남극연구국가로 도약
- 우주기상 예측정확도 향상을 통해 우주재난(인공위성 장애, 전파통신 교란, GPS오차, 전력망 손상 등)으로 인한 경제적 손실 최소화
- 얼음이 가지는 뛰어난 물질 합성, 오염 물질 분해 특성을 활용하여 환경·에너지 분야에서 실용화 가능

1-3. 실용화·상용화 및 4차 산업혁명에 대응한 융·복합 연구 추진

□ 목 표

- 남극 생명체의 유전적·생리적 특성을 활용한 유전자원을 발굴, 실용화하여 **극지 생명공학**을 **신성장동력**으로 **육성**
- 극한지에서 운용 가능한 탐사장비·로봇, 무선 통신 네트워크 기술 개발 등 **창의적인 융·복합 연구과제 발굴·추진**

□ 필요성


- 오랜 기간 극한환경에서 적응해 온 극지 생물의 특성은 **내한**(耐寒) **작물, 바이오 신소재** 등 다양한 산업분야로의 활용이 용이
- 산·학·연 협력연구 활성화를 통해 **국내·외 전문 인력**의 남극 연구 **참여를 확대**

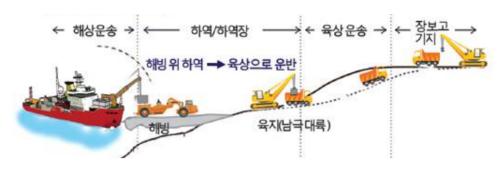
□ 추진현황

○ 세계 최초로 **남극 고등생물**(남극 대구)의 전체 **유전체**를 해독하고, 저온 적응 메커니즘을 규명

< 남극대구 >

< 호냉성 박테리아 결빙방지단백질 구조 >

○ 학·연 협력('10~)을 통해 창의 연구를 발굴(31건)하고, 산·연 협력('14~)을 통해 장비개발(2건)이 진행


□ 주요내용

- 극지생명과학의 실용화·상용화 기반 구축
- 남극생물의 유전체분석을 통한 유전적·생리적 진화 특성의 규명과 실용화 가능한 극지 유전자원* 발굴
- * 저온적응 메커니즘, 항동결 단백질, 극지생물 신소재 등
- * 고등생물 7종. 미생물 65종 이상 유전체 해독 및 유용 유전자원 13종 이상 발굴(~'21)
- 극지 고유생물에서 유래한 **유용물질**의 **상용화 기반** 기술을 **확보**하고 기술이전을 추진하여 극지생명공학을 통한 차세대 국가성장동력 창출
- * 신약 3건, 산업용 저온효소 3건, 혈액·줄기세포 냉동보존제 2건 등 기술이전(~'21)

< 극지 고유생물 유래 유용생물 상용화 시장규모 >

- 극한지 융·복합 연구를 위한 첨단 장비·기술 개발
- 극한지 환경에서의 탐사를 위한 장비·로봇 및 관련 융·복합 기술개발
- * 무선통신·센서 네트워킹. 신재생에너지 활용 등 (한국로봇융합연구소 협력과제)
- 남극해 **빙판위**에서 안전하게 선박 물품을 **하역**하기 위한 **핵심기술***을 **개발**하고, 극지 도로·항만·건설 인프라에 기술적용 가능성 검토
- * 하역시 빙판의 최대하중 평가기술 등

< 아라온을 활용한 남극장보고과학기지 해빙하역 >

○ 산·학·연 연구협력을 통한 남극연구 저변확대

- 학·연 극지연구진흥프로그램(PAP)을 통한 **창의적 극지연구 주제 발굴** 및 국내·외 석·박사 과정 학생의 **남극연구 참여기회 확대**
 - * 석·박사 학위자 배출 12명('17)→14명('18)→16명('19)→18명('20)→20명('21)
- 산·연 극지공동연구프로그램(PIP)을 통해 극지연구에 필요한 장비· 기술 개발을 활성화하고 사업화를 촉진
- * 연간 특허 1건('17)→특허2건, 기술이전 1건('19)→특허3건, 기술이전 2건('21)

2016 이전	2017	2018	2019	2020	2021	2022 이후
	남극	생물 유전체	정보분석	및 활용기반	구축	
	극지적	응 유래 대/	나체의 상용	화 구축		
		극	지유전자원	활용 다변호	화 플랫폼 가	발
	극한:	지 로봇·장비	및 통신 너	비트워크 기급	술개 발	
	빙판 내하중 평가기술 개발					
	PAP,	PIP 사업을	통한 산·학	·연 연구협력	격 진흥	

선진연구 대	비 국내수준					
2016	2021					
85%	100%					
40%	100%					
0%	50%					
0%	80%					
10%	70%					
-	-					

- 미지의 극지생명자원을 확보하고, BT·IT 등 관계 산업과의 융합을 촉진하여 국가 생명공학 분야의 경쟁력 제고
- 극한지에서 운용 가능한 첨단기술 개발을 통해 극한지 활동 범위를 확대하고 관련 산업 활성화기반 제공
- 학·연·산 협력체계를 통해 우수한 전문 인력을 육성하고, 극지장비의 자체 생산기술을 확보하는 등 극지 연구의 저변확대가 가능

전략 2 남극연구 지원기반 선진화

2-1. 남극활동 안전시스템 및 연구인프라 고도화

□ 목 표

○ **남극활동 종합안전시스템 확립**과 **극지연구 인프라 고도화**를 통해 보다 안전하고 효과적인 연구환경을 구축

□ 필요성

- 남극 **연구활동**의 **지역·범위**가 **확대**되고 **극지운항선박안전기준** (Polar Code)의 **발효**에 따라 극지 현장에서의 종합적인 안전시스템의 보완·개선이 절실
- 남극기지의 안정적인 운영을 위한 **항공 인프라 확보**와 **쇄빙연구선**의 **활용 극대화**를 통해 연구활동의 효율성 제고 필요

□ 추진현황

○ 쇄빙연구선 **아라온호** 준공('09.11), **장보고과학기지** 준공('14.2)

< 쇄빙연구선 아라온 >

< 장보고과학기지 >

- 안전한 남극연구활동을 위한 종합안전시스템 구축
- 기지별·상황별 맞춤형 안전 매뉴얼, 응급후송체계 등 **극지활동 현장** 의료지원체계 확립을 통해 안전한 극지 연구활동 여건 조성

- 국제해사기구(IMO)의 극지해역운항선박안전기준(Polar Code) 발효에 대응한 **아라온호 운항매뉴얼 보완** 및 선원의 교육**훈련 시행**
- 우리나라 주요 남극활동 지역의 공가정보 구축* 확대
- * 장보고 과학기지 인근 로스해 일대 수로조사 및 해도작성
- 남극활동 인프라 확충 및 운영 효율화를 통한 연구 환경 개선
- 장보고과학기지 인접 **암반 활주로***의 한-이태리 **공동운영**을 통해 남극 항공 인프라를 확충하고 및 활주로 운영 노하우를 확보
 - * 장보고기지에서 15km거리에 위치한 이태리기지 마리오주텔리 활주로
- 아라온호(제2쇄빙연구선 포함)의 외부기관(타부처·출연연) 공동활용체계 구축을 통해 극지 연구 인프라의 활용 극대화
- * 연구선 공동활용위원회 운영 및 공모사업 지원 등 범부처 활용계획 수립

< 제2쇄빙연구선 범부처 공동활용체계 구축 방안 >

- (목적) 범부처 활용체계를 구축하여 제2쇄빙연구선 운영의 효율성·효과성을 극대화하고, 해양과학기술 R&D사업의 연계성 강화를 통해 융·복합 연구를 활성화
- (운영체계) 기존 '연구선 공동활용위원회(해양수산부)'를 중심으로 부처 간 협업 체계를 구축하되. 실질적인 공동활용이 이루어지도록 운영방식을 개선
 - ① 공동활용과제의 제출대상기관을 범부처(산하 출연연 포함)로 확대
 - ② 과제선정을 위한 '과학분과위원회' 위원으로 관계부처가 참여
- (운영절차) 공동활용 과제공모(매년 1월) → 과제평가·선정*(3월) → 과제수행→ 차기연도 활용계획 수립(11월)
- (**홍보·지원**) 공동활용 과제공모 활성화를 위한 **관계부처 협의를 강화**하고, 연구비· 선박 사용료 지원을 점진적으로 확대
 - * 미래부, 산업부, 국토부, 환경부, 기상청 등 관계부처와 공동활용 신규과제 협의·발굴

- 세종과학기지('88 준공)의 노후시설 환경 개선 및 연구공간 추가 조성
 - * 제36차 남극조약협의당사국회의(ATCM, '13.5)에서 세종기지 노후시설 개선 권고

< 남극세종과학기지 노후시설 환경 개선 사업 완공('18년) 조감도 >

2016 이전	2017	2018	2019	2020	2021	2022 이후
	기지·현장별 안전 및 응급후송 체계 강화					
	아라온호 안전교육·훈련 강화					
	장보고기지주변 해로조사·해도제작 및 육상지도 갱신					
	장보고과학기지 주변 활주로 한-이태리 공동운영 추진					
쇄빙연구선 공동활용체계 구축						
세경	동기지 증축/	나업				

비고
'19년 구축 완료
Polar Code 반영
'21년 해도제작 완료
'20년 공동운영 개시
제2쇄빙연구선 건조시기 반영
연구동 증축, 환경개선

- 연구시설·인프라의 안전을 확보하여 보다 안정적인 연구활동 여건을 조성
- 악반 활주로 공동 운영을 통해 활주로 관제 등 운영기술과 항공기 운항 역량을 확보
- 연구선(아라온호·제2쇄빙연구선) 공동활용 활성화를 통해 외부기관의 극지연구 참여도를 제고하고 연구 인프라의 활용 극대화

2-2. 남극연구 진흥을 위한 인적역량 강화 및 국민저변 확대

□ 목 표

○ 극지연구 전문기관의 연구 역량 강화와 남극에 대한 인식제고를 통해 남극 연구활동에 대한 **국민적 동의**와 **지지**를 **확보**

□ 필요성

- 극지연구 전문기관이 수행하는 남극연구개발사업, 연구인프라 운영, 남극조약·남극정책 지원을 통해 **국가적인 극지연구역량을 집약**
- '남극연구 30주년('18.2.17)'을 계기로한 대국민 교육·홍보를 추진하여 현재까지의 연구성과와 향후 계획을 체계적으로 제시할 필요

□ 추진현황

- 과학기술연합대학원대학교(UST) **극지과학분야 석·박사 과정 운영**
- 과학교사 대상 극지교육 프로그램(극지아카데미) 제공('15~), 중·고생 대상 극지논술공모전 개최('09~)

- 극지연구 전문기관 및 연구인력 역량강화
- 극지 **산·학·연 협력관 건립**('18~'21)을 통해 극지연구 전문기관을 중심으로 효율적인 연구협력체계를 구축
- * 연구시료의 공유·개방, 극지활동 장비·기술지원, 극지과학 체험 중심 교육시설 제공

< 산・학・연 협력관 조감도 >

< 산・학・연 협력관 부지현황 : 인천 송도 >

- **극지연구 전문기관**이 수행하는 남극 연구개발사업, 남극 기반시설 운영, 국제공동연구 수행, 남극조약·정책연구 등의 **활동**을 **지원**
- 과학기술연합대학원(UST) 석·박사 과정운영 및 남극연구 선진국 연수과정^{*}을 통한 **남극연구 전문인력 양성**
- * 뉴질랜드 캔터베리대학 남극연구센터에서 시범사업 진행('16)
- 대국민 교육·홍보 및 과학문화 진흥
- 학생·교사·일반인 대상 **맞춤형 홍보** 및 교육 프로그램 운영을 통한 극지과학 인지도 제고 및 대국민 지지확보
- * 극지아카데미(교사), 극지캠프(초·중), 극지논술공모전(중·고), 극지콘서트 개최, 극지과학도서 발간, 극지 다큐멘터리·멀티미디어 영상물 제작·상영(일반) 등
- 남극 체험 및 기념행사 추진을 통한 극지과학문화 진흥
- * 남극체험단, 극지체험전시회, 극지연구 30주년 기념 행사 개최, 기념우표 발행 등

2016 이전	2017	2018	2019	2020	2021	2022 이후	
	극지연구 전담기관 역량강화						
남극연구 전문인력 양성							
극지 산·학·연 협력관 건립							
남극 교육기부 프로그램 운영							
	남극 문화·교육·체험 행사 추진						

비고
남극 연구활동 지원
UST, 선진국 연수과정
남극연구 플랫폼 구축
대상별 맞춤형 프로그램
극지연구 30주년 기념 등

- 국내 유일의 극지연구 플랫폼 기능을 수행하는 산·학·연 협력관 운영을 통해 극지연구 도약의 계기 마련
- 남극 과학교육 및 체험 기회 확대로 남극 연구활동의 중요성에 대한 이해도를 높이고 국민적 공감대 형성

전략 3 남극 거버넌스 리더십 제고

3-1. 남극 과학연구 분야의 국제협력을 통한 파트너십 강화

□ 목 표

○ 주요 지역의 연구·인프라 거점 운영과 국제 연구네트워크, 연구정보 공유체계 구축을 통해 **남극연구 공조체제 확립**

□ 필요성

- 남극 연구활동의 근본적 특성(낮은 접근성, 고비용·고위험, 국제조약이 적용되는 거버넌스 체제)으로 인해 **국제협력이 필수 불가결**
- 지속적인 연구성과의 창출을 위해서는 **선도국**과의 **양자협력** 뿐만 아니라 극지과학분야의 **다자간 협력과 국제적 기여**가 필수

□ 추진현황

- 남극 관문지역에 연구·인프라 협력 거점 설치(뉴질랜드, 칠레)
- 연례 국제 학술대회(국제 극지과학심포지엄), 해외 신진 과학자 연구 지원 프로그램(아시아 극지과학 펠로우십) 운영

- (양자간 협력) 남극 관문지역(뉴질랜드·칠레)의 연구·인프라 협력 거점 운영을 활성화하고, 주요 남극 연구국가·기관과의 연구협력 강화
- 한-뉴질랜드, 한·칠레 남극협력센터 운영을 통해 양자간 공동연구를 활성화하고, 세종·장보고기지에의 보급을 안정적으로 지원
- * (한-뉴질랜드) 해양-대가-빙상 상호작용 연구, 빙하 고기후 연구, 로스해 해양보호구역 연구 등
- * (한-칠레) 킹조지섬 육상 생태계 연구, 남극반도 연안 생태계 연구, 남극반도 기후변화와 해양반응 연구 등
- 남극 관문지역 이외 주요국과의 연구협력 및 공동연구 기획·추진
 - * 중국(PRIC), 영국(BAS), 일본(NIPR), 말레이시아(NARC) 등과 연구협약 체결(갱신)('17~'21)

- (다자간 협력) 남극 연구프로그램의 국제적 공조 및 네트워크 구축을 통해 연구 성과를 극대화
- **남극과학연구위원회**(SCAR)^{*}의 **중장기 비전**(Horizon Scan, '14.8)과 **연계**하여 다국가 공동연구 추진
 - * 남극과학연구위원회(SCAR) : 국제과학위원회(ICSU) 산하 비정부 조직으로, 남극조약협의당사국회의(ATCM)의 남극 과학연구에 대한 자문기구 역할을 수행

< 3차 기본계획 주요 연구사업의 참여(예정) 국제공	동연구	>
-------------------------------	-----	---

연구사업명	참여 국제프로그램	주요내용	참여국가	기간
장보고기지 주변 빙권변화 진단,	한국-미국-뉴질랜드 공동연구	남극 로스해 일대 빙하-해양 상호 작용 규명, 해저지각/화산 활동 및 해양 포유류 연구	미국, 뉴질랜드	'15~'18
원인규명 및 예측 (해수부 R&D 사업)	남극 빙붕 붕괴와 후퇴에 관한 지식종합을 위한 네트워크(NECKLACE)	주요 남극 빙붕 상 각종 센서 설치· 운영을 통한 환남극 빙붕 붕괴와 후퇴 경향 측정·규명	영국, 호주, 벨기에, 스웨덴	'15~'20
	아문젠해 빙붕소멸 속도와 해양변동 추세연구	아문젠 빙붕 소멸속도 실측과 모델링, 융빙수 유입량·성분·분포패턴 규명	영국, 미국, 스웨덴	'17~'19
아문젠해 빙붕소멸 속도와 해양변동 추세 연구 (극지	서남극해 생태계 생지회학 순환 장기 모니터링 프로그램(US LTER)	서남극 반도 대양 해양 생태계와 해빙-생물동학 장기 현장관측 연구	영국, 미국	'90~
연구소 주요사업)	남극 빙붕 붕괴와 후퇴에 관한 지식종합을 위한 네트워크(NECKLACE)	주요 남극빙붕 상 각종 센서 설치· 운영을 통한 환남극 빙붕 붕괴와 후퇴 경향 측정·규명	영국, 호주, 벨기에, 스웨덴	'15~'20
서남극 열개구조와 남극 중앙 해령 하부의 맨틀 상호	남극과학연구위원회 지권 반응과 빙권 진화에의 영향(SCAR SERCE) 프로그램	지권·빙권 간 상호작용 이해 증진을 통한 얼음 질량수지, 빙동학과 해수면 변화의 관리 증진	영국, 호주, 미국, 중국, 일본, 덴마크, 캐나다, 뉴질랜드	'12~
연관성 규명 (극지 연구소 주요사업)	남극 로스해 지체구조 및 퇴적구조 연구사업 (ROSSMAP)	로스해 지체구조 및 퇴적구조 매핑	뉴질랜드, 이탈리아	'09 <i>~</i>

- 국내·외 남극연구자간 교류 확대를 위한 **국제학술대회*** 개최 및 해외 우수과학자 초청 프로그램 시행
- * 2019년도 남극 지구과학 국제심포지엄(SCAR 주관, 매4년) 유치 추진, 국제 극지 과학 심포지엄(극지연구소 주관, 매년) 개최
- 해외 신진 연구자의 국내 연구 참여기회를 확대하고 **국내 연구자**와의 **협력을 강화**하여 차세대 극지연구 협력 네트워크 구축
- * 아시아 극지과학 펠로우십 운영(매년 5~6명의 해외연구자를 선발하여 극지 현장 및 쇄빙연구선 활용 조사 기회 제공, '15~)

- (정보공유) 양자·다자협력체계 구축을 위한 정보공유 시스템 마련
- 남극 빙하·생태계 모니터링 등 연구활동 정보교환과 공유 활성화를 위한 서비스 체계 구축
- * 한국극지데이터센터(KPDC). 분야별 시료정보 데이터베이스. GIS 시스템 등 남극연구정보 데이터베이스 고도화
- 남극조약에 따른 남극 획득 정보의 교환 및 공개의무 이행
- * 제35차 남극조약협의당사국회의(ATCM. '12)에서 국가간 정보공유체계(EIES) 구축에 합의

2016 이전	2017	2018	2019	2020	2021	2022 이후	비고
국가간·기관간 남극연구 협력체제 구축·운영						남극 거점 협력센터 운영	
남극연구 전문가간 교류협력 강화						남극연구 네트워크 구축	
남극 획득 정보 공유 서비스 기반 마련							남극연구정보 DB고도화

- ㅇ 국제 공동연구과제의 주도적 발굴과 적극적 참여를 통해 국제 협력체제를 강화
- ㅇ 남극 획득정보의 체계적 관리와 공유를 통해 연구 수행의 효율성을 제고하고 연구 성과의 체계적 발전에 기여

3-2. 남극 환경보호 및 연구협력의제 발굴 · 선도

□ 목 표

○ 남극 **환경모니터링** 활동을 **강화**하고, 남극 내 주요 현안 해결을 위한 논의에 주도적으로 참여하여 **남극 거버넌스 내 영향력을 제고**

□ 필요성

- 남극조약협의당사국(ATCP)의 일원으로 **남극 환경**과 **생태계 보존**을 위한 **국제적 노력**에 **동참**하고 우리나라의 국제적 위상을 제고
- 남극조약체제의 환경보호 강화 추세에 따른 국제규범의 형성과 남극관광 등 **새로운 경제적 이슈**에 대해 **대응**할 필요

□ 추진현황

- 제39회 남극조약협의당사국회의(ATCM, '16)에서 '새로운 사찰 모델 개발'을 제안하여 회기간 협의 그룹(ICG) 설치가 결의
- 남극연구과학위원회(SCAR) 부의장('10~'14), 남극국가프로그램운영자 위원회(COMNAP) 부의장('12~'16) 수행

- 남극조약협의당사국(ATCP)의 일원으로서 남극환경 보호활동을 주도
- 남극 상주기지(세종, 장보고)의 친환경 관리시스템 구축 및 운영
- * 친환경적 기지운영, 기지 주변 환경관리, 인간 활동으로 인한 위해성 평가·실증분석 등
- * 장보고기지 인근지역에 대한 남극특별보호구역(ASPA) 추가 지정 추진(~'20)
- 남극 육상·해양 생태계에 대한 모니터링과 과학연구를 통해 환경 변화를 지속적으로 감시
- * (육상) 킹조지섬, 테라노바만의 남극특별보호구역에 대한 중장기 모니터링사업('17~'21)
- * (해양) 남극해양생물자원보존위원회(CCAMLR)의 로스해 해양보호구역(MPA) 생태계모니터링 프로그램 주도('17~'21)

- ㅇ 남극 거버넌스 이슈 발굴 및 논의 주도
- 남극조약협의당사국회의(ATCM)에서 주요 이슈*에 대한 협의 주도
- * 새로운 사찰모델 개발(ICG 공동의장. '16~). 킹조지섬 기지 내 외래종 퇴치 등
- 남극해 해양보호구역(MPA) 지정 확대에 대한 정책적·과학적 기여
- * 남극연구·정책 관련 정부·연구기관·전문가 정책협의체 구성·운영
- 남극조약체제 현안* 관련 국제조약·정책연구 활성화
- * 환경보호의정서 제6부속서, 영유권 및 형사관할권, 생물자원탐사(bio-prospecting), 관광 및 비정부활동, 해양생물자원의 보존 및 이용, 보호구역 설정·운영 등
- 남극관련 국제기구·회의* 내 주요 직위(워킹그룹 의장 이상) 진출 확대 지원
- * 남극연구과학위원회(SCAR), 남극프로그램국가운영자위원회(COMNAP), 남극 조약사무국(ATS), 남극해양생물자원보존위원회(CCAMLR) 등

	2016 이전	2017	2018	2019	2020	2021	2022 이후
	남극환경 모니터링 및 인간활동 위해성평가						
Ī	ATCM 사찰 ICG 공동의장 수행						
Ī		킹조지섬 외래종 퇴치 국제공동연구 추진					
	남극조약체제 현안 관련 국제조약·정책연구 활성화						
		국제기구·회의 주요직위 진출 인재육성 방안마련					

비고
정기 남극환경모니터링 실시
결의문 채택 시까지 운영
관계국 협의 중
극지법·정책 협의회 운영
국제기구 진출확대 지원

- 남극 환경과 생태계 보존을 위한 국제적 노력에 적극적으로 동참하여우리나라의 국제적 위상을 제고
- 남극조약체제 관련 이슈를 선점·주도함으로써 남극조약협의당사국, 남극 연구활동 선도국으로서의 영향력을 확대

제3차 남극연구활동진흥기본계획 기대성과

구 분	`2017년	2021년
과거 기후환경 변화 복원	● (퇴적물 코어 시추) 최장 14m ● (기후변화 복원) 80만년전	● (퇴적물 코어 시추) 최장 30m ● (기후변화 복원) 200만년전
남극 환경· 생태계 조사	● (남극반도 빙하 감소에 따른 해양생태계 변화 분석) 10년 ● (해양보호구역 연구) 없음	● (남극반도 빙하 감소에 따른 해양생태계 변화 분석) 30년 이상 ● (해양보호구역 연구) 해양생태계 생물 종다양성 DB 구축
남극 환경의 미래 예측 모델 개발	● (남극반도 해양연구 거점) 1곳 ● (킹조지섬 육상생태계) 기초 연구 자료 확보	● (남극반도 해양연구 거점) 3곳 ● (킹조지섬 육상생태계) 생태계 변화 예측 기술 개발
남극 내륙 연구 개척	● (코리안루트 개척) 300km● (심부빙하 시추) 없음● (빙저호 시추기술개발) 없음	 ● (코리안루트 개척) 3,000km ● (심부빙하 시추) 3,000m ● (빙저호 시추기술개발) 2,500m
미답지 등 유망연구분야 선점	● (중앙해령 탐사) 열수 분출구 및 신종생명체 발견 등	● (중앙해령 탐사) 남극권 맨틀의 특수성 규명 등 관련 연구 고도화
극지 생명과학 실용화 기반 구축	● (유용물질 상용회) 극지적용 고유 해양생물 확보(시료보관동 건립)	● (유용물질 상용회) 기술이전 본격화 (신업용 저온효소, 냉동보존제 등)
극한지 첨단 장비·기술개발	● (극한지 탐사 기술개발) 기초 연구 단계	● (극한지 탐사 기술개발) 융복합 기술 개발 본격화
남극 연구 인프라 확충 및 운영 효율화	● (활주로) 운영 노하우 없음● (쇄빙선 공동활용) 극지(연) 중심	 (활주로) 이태리 활주로 공동 활용 및 운영 노하우 확보 (쇄병선 공동활용) 범부처 공동활용
남극 과학연구 국제협력 강화	 ● (남극특별보호구역 지정) 2곳 ● (국제심포지엄 개최) 1개 ● (국제기구 진출) 없음 	 ● (남극특별보호구역 지정) 3곳 ● (국제심포지엄 개최) 2개 ● (국제기구 진출) 주요 직위 진출
남극연구 국민저변 확대	 ● (학·연 극지연구 프로그램 지원) 연간 12명 ● (산학연 협력 인프라) 없음 	 ● (학·연 극지연구 프로그램 지원) 연간 20명 ● (산학연 협력 인프라) 1곳

V 추진체계 및 소요예산(안)

1. 추진체계(안)

□ 주요 부처별 역할

- (해양수산부) 남극연구활동진흥, 기본계획 및 연차별 시행계획 수립·추진 총괄(남극 연구개발, 인프라 구축 및 운영·지원, 전문연구기관 육성, 남극해 수산자원조사 및 해양 생태계 보전활동 등)
- (미래창조과학부) 기초원천 연구개발(R&D) 총괄 및 정책 지원(거대공공연구)
- (외교부) 남극조약(남극활동 허가) 및 외교정책 지원
- (환경부) 남극 환경보호구역 모니터링 등 환경관련 정책 지원

□ 주요 기관별 역할

- (전문 기관) 남극 연구활동(국가 R&D, 기관고유사업) 책임수행 및 연구인프라(세종·장보고 과학기지, 아라온호) 운영·관리
- (관계 연구기관·대학) 전문분야별 연구협력

관계 연구기관	협력 내용
광주과학기술원	극한지 장비제어기술(무선 통신시스템 등)
국립해양조사원	남극해 공간정보 구축(수로조사 및 해도제작)
 선박해양플랜트연구소	쇄빙선 안전하역 요소기술개발(빙판 내하중 평가기술)
 한국건설기술연구원	남극내륙 고정캠프모듈 개념·실시 설계
한국전자통신연구원	극한지 장비제어기술(센서 네트워킹)
 한국천문연구원	우주 및 고층대기 연구(오로라 관측 및 자료 분석)
한국해양과학기술원	남극해 연안 해양 연구, 빙저호 탐사기술개발, 극한지 장비제어 기술(극한지 유무선 네트워크 시스템) 등

관계 대학 협력 분야·내용

(우주·대기) 자기권 관측, 우주선유발 동위원소 연대측정, 성층권 오존농도 측정 등 (해양환경) 남극해 환경변화 관측, 남극해 해양보호구역 생태계 종다양성 분석, 해양 퇴적물 포집. 지온변화 관측, 탄성파형 모델링 등

(빙권변화) 빙하후퇴 영향분석, 빙하코어의 온실가스 분석, 심부빙하시추기술개발 등 (화산·지각) 화산암·운석 등 암석학 관련부문

(유전체활용) 항생물질 연구, 신규 대사체 발굴, 남극 좀새풀 유전자 활용, 남극 천연물특성 분석, 신약 개발(면역·치매·항암), 산업용 저온효소 개발 등

※ 현재 국내 19개 대학과 협력연구가 진행예정이나 향후 협력 분야 확대에 따라 변동 가능

2. 소요예산(안)

* 소요예산은 추정치로 국가재정운용계획 및 예산편성 상황에 따라 변동될 수 있음 (단위: 억원)

		관계부처	소요예산			
구분	수관무저		2차 기본계획(16년)	3차 기본계획	릭(17년)	山立
총계				2,345	(367)	
1. 남극연구 지평확대				1,654	(274)	
1-1. 남극연구를 통한 글로벌 환경변화의 예측·대응				648	(100)	
■ 빙하코어 활용 고해상도 기후· 환경변화 복원	해수부	미래부	_	45	(9)	신규
■ 퇴적물 활용 200만년간 남극 고환경변화 복원	해수부	미래부	76 (16)	60	(12)	
▪ 남극기후변화의 지역적 차이 원인규명	해수부	미래부	66 (21)	40	(8)	
■ 얼음화학 기초연구를 통한 극지방 자연현상 규명	해수부	미래부		120	(-)	
• 아문젠 빙붕소멸 속도와 해양 변동 추세 연구	해수부	미래부	94 (19)	60	(12)	
▪ 장보고기지 주변 빙권변화 진단, 원인규명 및 예측	해수부	미래부	60 (20)	40	(20)	
서남극 빙산 용융에 따른 해수면 변동연구	해수부	미래부		60	(-)	
▪ 남극해 해양보호구역의 생태계 구조 및 기능 연구	해수부	미래부 환경부		131	(20)	신규
▪ 남극반도 연안해양시스템 변화 2050 전망	해수부	미래부	_	40	(8)	신규
■ 환경변화에 대한 킹조지섬 육상생태계 변화예측 기술개발	해수부	미래부	44 (14)	52	(11)	· 전차(2차) 총 사업기간 : 3년
1-2. 남극 내륙진출과 미지·미답의 연구영역 개최				560	(104)	
■ 남극내륙 진출루트 개척 및 심부빙하/빙저호 시추기술개발	해수보	미래부	_	260	(50)	신규
▪ 남극빅토리아랜드 지역 지각 진화 및 행성형성과정 연구	해수부	미래부	70 (30)	60	(30)	

			소요예산			
구분	수반무저	관계부처	2차 기본계획(16년)	3차 기본계획(17년)	비고
• 남극종단산맥에 기록된 지구의 진화와 고환경 규명	해수부	미래부		120 (-	-)	
▪ 우주환경과 저층대기에 의한 극지고층대기변화	해수부	미래부 기상청	47 (23)	45 (9	9)	
서남극 열개구조와 남극 중앙 해령 하부맨틀 상호 연관성	해수부	미래부	33 (9)	75 (1	15)	· 중앙해령 탐사기간 확대 등에 따른 아라온호 사용료 증가
1-3. 실용화, 상용화 및 4차 산업 혁명에 대응한 융·복합 연구 추진				446 (7	70)	
• 극지생물 유전체 정보분석 및 활용기반 구축	해수부	미래부	45 (15)	70 (1	14)	· 전차(2차) 총 사업기간 : 3년
극지적응 고유생물 유래 대사체의 상용화 기반 구축	해수부	미래부	60 (15)	40 (8	8)	
극지유전자원 활용한 신규 활성 항생제 후보물질 개발	해수부	미래부		130 (2	20)	
극한지 유무선 네트워크 시스템 구축 기술개발	해수부	미래부 산업부		61 (8	8)	신규
남극해 선박하역을 위한 빙판의 내하중 평가기술 개발	해수부	산업부		45 (-	-)	신규
▪ 산·학·연 연구협력(PAP, PIP)	해수부		61 (15)	100 (2	20)	· PAP사업 신규분야 과제 신설에 따른 예산 증액
2. 남극연구 지원기반 선진화				604 (8	82)	
2-1. 남극활동 안전시스템 및 연구 인프라 환경 고도화				310 (7	78)	
▪ 기지·현장별 맞춤형 안전시스템 구축	해수부	안전처		25 (5	5)	
• 아라온호 안전메뉴얼 개선 및 안전교육·훈련시스템 구축	해수부	안전처		14 (7	7)	
■ 장보고기지 주변 해로조사 및 해도제작	해수부			100 (2	20)	
• 장보고과학기지 주변 활주로 한-이태리 공동운영 추진	해수부			130 (5	5)	
▪ 세종과학기지 증축 및 환경 개선	해수부			41 (4	41)	

78	주관부처	관계부처	소요	요예산	
구분			2차 기본계획(16년)	3개 기본계획(17년)	비고
2-2. 남극연구 진흥을 위한 인적 역량 강화 및 국민저변 확대				294 (4)	
■ 극지 산·학·연 협력관 건립 및 운영	해수부			268 (-)	
• 남극 교육기부 프로그램	해수부			5 (1)	
▪ 남극 문화·교육·체험 행사 추진	해수부			21 (3)	
3. 남극 거버넌스 리더십 제고				87 (11)	
3-1. 국제협력을 통한 파트너십 강화				40 (6)	
▪국가간·기관간 남극연구 협력 체제 구축·운영	해수부 외교부			15 (3)	
▪ 남극연구 전문가간 교류협력 강화	해수부			15 (3)	
▪남극 획득 정보 공유서비스 기반 마련	해수부			10 (-)	
3-2. 남극조약 의무이행 및 의제 발굴·선도				47 (5)	
▪남극 환경모니터링 및 인간 활동 위해성 평가	환경부	해수부		37 (3)	
▪ 남극조약체제 국제조약·정책 연구 활성화	해수부	외교부		5 (1)	
▪ 국제기구·회의 주요직위 진출 인재육성	해수부	외교부		5 (1)	

해양수산부 해양정책실 해양개발과 담당자 최현수 사무관 연락처 전 화: 044-200-6182 E-mail: legolion@korea.kr